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Simple model for linear and nonlinear mixing at unstable fluid interfaces
with variable acceleration

John D. Ramshaw
Lawrence Livermore National Laboratory, University of California, P.O. Box 808, L-097, Livermore, California 94551

~Received 1 April 1998!

A simple model is described for predicting the time evolution of the half-widthh of a mixing layer between
two initially separated immiscible fluids of different density subjected to an arbitrary time-dependent variable
acceleration historya(t). The model is based on a heuristic expression for the kinetic energy per unit area of
the mixing layer. This expression is based on that for the kinetic energy of a linearly perturbed interface, but
with a dynamically renormalized wavelength which becomes proportional toh in the nonlinear regime. An
equation of motion forh is then derived from Lagrange’s equations. This model reproduces the known linear
growth rates of the Rayleigh-Taylor~RT! and Richtmyer-Meshkov~RM! instabilities, as well as the nonlinear
RT growth lawh5aAat2 for constanta ~whereA is the Atwood number! and the nonlinear RM growth law
h;tu for impulsive a, wherea and u depend on the rate of kinetic energy dissipation. In the case of zero
dissipation,u52/3 in agreement with elementary scaling arguments. A conservative numerical scheme is
proposed to solve the model equations, and is used to perform calculations that agree well with published
experimental mixing data for four different acceleration histories.@S1063-651X~98!13411-6#

PACS number~s!: 47.20.Bp, 47.20.Ma, 47.27.2i, 47.55.Kf
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I. INTRODUCTION

There is considerable current interest in unstable fluid
terfaces, particularly those driven by the normal accelera
of adjacent fluid layers with different densities. The initi
unperturbed interface is assumed to be planar, and we re
attention to incompressible immiscible fluids with negligib
surface tension. The degree to which the two fluids
mixed together by an instability may be characterized by
half-width h(t) of the mixing layer as a function of the tim
t. This half-width is usually defined as the visual penetrat
depth of the lighter fluid into the heavier one. Alternati
definitions ofh will differ in numerical value but should be
of the same order of magnitude. For theoretical purpose
might be preferable to defineh as the volume per unit are
transported~exchanged! across the initial interface. Thi
quantity is inherently symmetrical between the two fluid
but unfortunately is difficult to determine experimentally.

The two classical instabilities of this type are th
Rayleigh-Taylor ~RT! @1# and Richtmyer-Meshkov~RM!
@2,3# instabilities, which respectively correspond to the o
posite limiting cases of constant and impulsive accelerat
These instabilities are respectively defined bya(t)5a0
5const and a(t)5Dvd(t), where a(t) is the time-
dependent acceleration of the interface in the normal di
tion. In the linear regime,h may be identified with the am
plitude of a small sinusoidal perturbation of wavelengthl
52p/k. The time evolution ofh(t) may then be determine
by a conventional linear stability analysis, which yields@1#

ḧ5kAah, ~1!

where q̇5dq/dt for any q, A5(r22r1)/(r21r1) is the
Atwood number, andr1 ,r2 are the densities of the two ad
jacent incompressible fluids, which are labeled so that a p
tive accelerationa(t) is directed from fluid 1 into fluid 2.
PRE 581063-651X/98/58~5!/5834~7!/$15.00
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@The accelerationa(t) is of course equivalent to an artificia
external body forceg(t) in the opposite direction, and vic
versa.# For an initially quiescent interface withḣ50 at t
502, it follows that h5 1

2 h0(ert1e2rt) in the RT case
@where h05h(0).0 and r 25kAa0# and h5h0(1
1kADvt) in the RM case. Thus the RT case exhibits exp
nential growth, but only whenAa0.0, whereas the RM cas
exhibits linear growth regardless of the sign ofADv. Notice
that negative values ofh must be allowed in order to de
scribe the RT stable casesAa0,0 andADv,0. This merely
indicates that the initial displacement has suffered a reve
in direction, in which case the half-width of the mixing laye
may be identified withuhu.

In the late-time fully nonlinear regime,h(t) is believed to
obey simple scaling laws for both the RT and RM instab
ties. The late-time scaling law for the RT instability is give
by @4–6#

h5aAa0t2 ~2!

for Aa0.0, where the dimensionless coefficienta is of order
0.05 and is nearly independent ofA. This time dependence
follows from a simple dimensional argument@4#, but the fact
that h remains nearly linear inA even in the nonlinear re
gime is noteworthy, as this does not follow from dimension
considerations alone.

The corresponding late-time scaling law for the RM ins
bility is somewhat more subtle, and takes its simplest form
the inviscid case where there is no dissipation of kinetic
ergy into thermal energy. In this case the kinetic energy
unit areaK deposited by the impulsive acceleration is co
served fort.0 and becomes available for use in constru
ing a similarity variable. The same type of dimensional
gument used by Taylor to determine the scaling law for
expanding blast wave@7# then leads immediately@8# to the
RM scaling law
5834 © 1998 The American Physical Society
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h5bS K

r̄
D 1/3

t2/3, ~3!

wherer̄5 1
2 (r11r2) andb is another dimensionless coeffi

cient, which may, however, depend uponA. This scaling law
is also confirmed by other arguments@9,10# which further
indicate that the time exponent of 2/3 is shifted to sma
values by nonzero dissipation. The RM scaling law th
takes the formh;tu @9–11#, where the exponentu<2/3 is
somewhat uncertain. Experiments and numerical simulat
to date have yielded a fairly wide range of values foru ~see
@11#, and references cited therein!, which mostly tend to lie
below 2/3 consistent with the effects of dissipation.~It also
seems likely that some of these previous studies did
reach late enough times to see the asymptotic limiting beh
ior, and this probably accounts for some of the scatter in
reported values ofu.! Based on Eq.~3!, however, it seems
quite certain thatu52/3 in an ideal incompressible syste
with zero dissipation. It should be possible to confirm this
direct numerical simulations carried to sufficiently late time
provided that care is taken to minimize the effects of num
cal dissipation. It is of course not surprising that the RM ca
should be more sensitive to dissipation than the RT ca
since the constant acceleration provides a continual supp
kinetic energy in the latter which is absent in the former.

Use of the ideal RM scaling law requires knowledge
the kinetic energy per unit areaK deposited by the impulsive
acceleration. This energy may readily be evaluated in
linear approximation, with the result@10,12,13#

K5
1

2
r̄k~ADvh0!2, ~4!

which depends on the amplitude and wavelength of the
tial perturbation as well as the strength of the impulse
follows that even at late times, the RM instability retai
memory of the initial conditions throughK, whereas the RT
instability is believed to lose all memory of the initial con
ditions at late times@4#. This difference is a further reflectio
of the fact that the RT instability is driven by a continuo
source of kinetic energy which is absent in the RM case

The pure limiting cases of RT and RM instability a
rarely encountered in practical situations, where the accel
tion a(t) usually exhibits a more complicated time depe
dence~see@6,14,15#, and references cited therein!. Our pur-
pose here is to present a simple model for predictingh(t) for
arbitrarya(t). This model is based on a heuristic express
for the kinetic energy per unit area of the mixing layer. Th
expression has the same form as that for the kinetic energ
a linearly perturbed interface, but with the perturbati
wavelengthl52p/k replaced by a dynamically renorma
ized wavelengthl(t) which is postulated to become propo
tional to h in the nonlinear regime. An equation of motio
for h is then derived from Lagrange’s equations, with t
inclusion of an additional generalized force term to repres
the effects of dissipation@16#. In the special cases of consta
and impulsive acceleration, this model correctly reprodu
all of the known growth behavior and scaling laws summ
rized above for both the RT and RM instabilities in both t
linear and nonlinear regimes. This lends some confidenc
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its use for arbitrarya(t). We have also verified that th
model accurately represents the variable-acceleration ex
mental data of Dimonte and Schneider@6#, but this is not a
very stringent test for reasons to be discussed in Sec
Further applications to a wider range of variable-accelera
experimental data and direct numerical simulations will
required to obtain a better assessment of the overall accu
and utility of the model for arbitrarya(t).

II. CONSTRUCTION OF THE MODEL

We consider a flat slab of large but finite thickness co
posed of two adjacent incompressible fluid layers. The
perturbed interface between the fluids is located atz5Z(t)
in a Cartesian coordinate system (x,y,z). Fluid 1 has density
r1 and occupies the regionZ(t)2DZ1,z,Z(t), while fluid
2 has densityr2 and occupies the regionZ(t),z,Z(t)
1DZ2 . The unperturbed velocity of both fluids is then sim
ply Ż in the z direction, and the acceleration of the slab
a(t)5Z̈. Now suppose that the interface location is pe
turbed to z5Z(t)1h(t)coskx, where uhuk!1 and uhu
!DZi . We require the resulting potential flow fieldu
5“f to first order inh. In this linear approximation the
boundary conditions on the velocity potentialf are simply
]f/]z5Ż1ḣ coskx at z5Z and ]f/]z→Ż for uz2Zu
@uhu. The solution to Laplace’s equation under these con
tions is readily found by separation of variables, and is giv
by

f5Żz7
ḣ

k
coskx exp@7k~z2Z!#, ~5!

where the upper sign applies forz.Z1h coskx and the
lower sign forz,Z1h coskx. The total kinetic energy pe
unit area of the slab is then given byT
5 1

2 *dxdydzru“fu2/*dxdy. SinceT is quadratic inf, it
must be evaluated to second order inh and/orḣ to describe
the linear regime. For this purpose it is essential to inclu
the second-order effects of the perturbation on thez integra-
tion limits. However, it is unnecessary to evaluatef itself to
second order, since the linearized interface dynamics is c
pletely determined by the linear approximation tof @1#. The
second-order correction tof therefore cannot contribute toT
to second order, and this has been directly confirmed b
more detailed analysis. The required integrations
straightforward, and the resulting second-order express
for T is given by

T5
1

2k
r̄ḣ22

1

2
DrhḣŻ1

1

2
MŻ2, ~6!

where M5r1DZ11r2DZ2 and Dr5r22r152r̄A. The
first term in Eq.~6! represents the kinetic energy in a Ga
ilean coordinate frame moving with velocityŻ. This is just
the intrinsic kinetic energy of the moving perturbed inte
face, which is therefore given by

K5
1

2k
r̄ḣ2. ~7!
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This expression reduces to Eq.~4! in the impulsive case
whereḣ5kADvh0 for t.0.

Equation~6! will be used to obtain the dynamical evolu
tion of the interface from Lagrange’s equations@16# in terms
of the generalized coordinatesh andZ and their time deriva-
tives ḣ and Ż. For this purpose we must also consider t
potential energyV associated with whatever external forc
~presumed conservative! are employed to produce the acce
erationa(t). But these forces are applied at the outer s
faces of the slab, so they are independent ofh. It follows that
V5V(Z) is also independent ofh and will therefore not
contribute to the Lagrange equation of motion forh @16#.
Since this is the only equation of motion we shall consid
V(Z) can henceforth be ignored and the LagrangianL can
simply be identified withT.

We first verify that this approach correctly reproduces
known linearized equation of motion forh, namely Eq.~1!.
In the absence of dissipation, Lagrange’s equation forh is
simply @16#

d

dt S ]T

]ḣ
D 5

]T

]h
. ~8!

The required partial derivatives ofT are easily evaluated
from Eq. ~6!, with the results]T/]ḣ5( r̄/k)ḣ2 1

2 DrhŻ and
]T/]h52 1

2 DrḣŻ. Combining these derivatives with Eq
~8!, we immediately obtain Eq.~1!. Thus the linear regime is
properly described by Eqs.~6! and~8!, so we may now direct
our attention to the late-time fully nonlinear regime.

Equation~6! is based on a linearized analysis, so it clea
no longer strictly applies in the nonlinear regime. Howev
there are nevertheless heuristic reasons for suspecting th
appropriate reinterpretation of the linear analysis may re
some validity in the nonlinear regime as well. We obse
that this problem contains no natural length scale~in the
limit of large DZi), so there is no objective basis for descri
ing the mixing layer as being either thick or thin. An obser
er’s subjective impression of the thickness of the mixi
layer is determined entirely by the distance from which it
viewed. The mixing layer will always look thin when viewe
from a sufficiently distant vantage point. That is to say, fro
far away the interface will always appear to be only sligh
perturbed, with an apparent perturbation amplitude of or
uhu. Of course, the perturbation will now be irregular rath
than sinusoidal, and the apparent transverse length sca
the irregularities will also be of orderuhu. This length scale
plays the role of the effective wavelength of the perturbati
These heuristic considerations suggest that, at least in s
rough scaling sense, the mixing layer may be expected
behave as though it always remains in the linear regime,
with a time-dependent perturbation wavelengthl(t) which
is continuously dynamically renormalized to a value of ord
uh(t)u. We therefore adopt the working hypothesis that E
~6! remains valid even in the fully nonlinear regime withl
52p/k replaced byl(t)5buh(t)u, whereb is a dimension-
less coefficient of order unity which remains to be det
mined. This hypothesis will be referred to as the wavelen
renormalization hypothesis~WRH!, the consequences o
which will now be explored.
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Similar ideas have previously been discussed by other
thors. In particular, the above plausibility argument for t
WRH is somewhat reminiscent of the motivation for the s
perposition approximation of Glimmet al. @17#, and a simi-
lar linear relation betweenl and h has previously been in
voked in the RT context by Youngs@4# and Mikaelian
@18,19#, in the RM context by Dimonte and co-worker
@11,20#, and in both contexts by Alonet al. @21#. However, it
is essential to realize that this relation does not lead to uni
results in and of itself. In particular, differential equatio
valid for constantl, such as Eq.~1!, give no indication as to
whether factors involvingl(t) should appear inside or out
side of time derivatives. The manner in which the relati
l(t)5buh(t)u is introduced is therefore critical. By introduc
ing this relation intoT and then using Lagrange’s equatio
to determine the time evolution ofh(t), we automatically
preserve the essential property of energy conservation, w
of course is the basis for Eq.~3!. Other ways of introducing
the relationl(t)5buh(t)u may lead to results inconsisten
with Eq. ~3! in the RM case, such ash;At @11,20#.

It is convenient to combine the linear and nonlinear ca
by letting l52p/k5l(uhu). Equation~6! then becomes

T5
r̄

4p
l~ uhu!ḣ22

1

2
DrhḣŻ1

1

2
MŻ2, ~9!

while Eq. ~7! becomes

K5
r̄

4p
l~ uhu!ḣ2. ~10!

These expressions now encompass both constantl and the
WRH (l5buhu) as special cases. Of course, a transition
tween these two cases must be made at some approp
intermediate value~or over some range of values! of uhu.
This transition will be addressed in Sec. IV.

As previously discussed, it will also be necessary to all
for energy dissipation in order to realistically represent
nonlinear regime. This can be done by introducing an ad
tional generalized forceQ into Eq. ~8! to represent the ef-
fects of dissipation@16#:

d

dt S ]T

]ḣ
D 5

]T

]h
1Q. ~11!

We shall assume that the dissipation rate of kinetic energ
the nonlinear regime is controlled by the large scale moti
and is consequently independent of molecular viscosity,
as it is in turbulence@22#. This implies that the dissipative
force Q can be expressed entirely in terms ofr̄, h, and ḣ.
Sinceh is a distance coordinate,Q has the units of force pe
unit area or energy per unit volume. ThusQ must be of order
r̄ḣ2, and in order to be purely dissipative in nature it mu
have the opposite sign fromḣ. It follows thatQ must be of
the form

Q52cr̄uḣuḣ, ~12!

wherec>0 is a new dimensionless coefficient of order un
which may depend uponA.
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Equations~9!, ~11!, and ~12! may now be combined to
obtain a general equation of motion forh. Evaluating the
required partial derivatives ofT from Eq. ~9!, we readily
obtain

lḧ1
1

2
l̇ḣ12pcuḣuḣ22pAah50, ~13!

where use has been made of the fact thatl̇5(]l/]h)ḣ
5(dl/duhu)(h/uhu)ḣ. Equation~13! is the fundamental dy-
namical evolution equation of the model. It is a second-or
ordinary differential equation which determinesh(t) for an
arbitrary givena(t). However, the model is not yet comple
because we have not yet specified the values of the m
coefficientsb and c, or the functional form ofl(uhu) re-
quired to provide a suitable transition between the linear
nonlinear regimes. These quantities will be determined
Secs. III and IV below.

In the linear regime with zero dissipation,l is constant
with its initial valuel0 so l̇5c50 and Eq.~13! reduces to
Eq. ~1!. In the nonlinear~WRH! regime we havel5buhu
and l̇5b(h/uhu)ḣ, and Eq.~13! becomes

buhuḧ1
bh

2uhu
ḣ212pcuḣuḣ22pAah50. ~14!

In terms ofv[ḣ, Eq. ~14! takes the form

v̇5
2ph

buhu
Aa2S v

2h
1

2pc

b UvhU D v. ~15!

This equation is reminiscent of previous simple mixing-lay
models based on bubble-rise dynamics@6,11,21,23,24#, in
which v represents the bubble velocity and the terms prop
tional to a and v are respectively interpreted as buoyan
and drag forces, with the coefficients adjusted to allow
such additional effects as added mass and entrainment.
models have indeed met with some success in correla
experimental data@6#, but have previously seemed rather t
ad hoc and approximate to be taken very seriously. It
therefore noteworthy that the present development leads
similar formulation based on an entirely different and co
siderably more general approach in which bubble dynam
and the ingredients thereof~buoyancy, drag, added mas
etc.! play no explicit role. It is tempting to interpret this as a
indication that models of this type may be somewhat be
founded than they first appear. However, it should not
assumed that all such models are essentially equivalen
interchangeable, as they may exhibit qualitative as wel
quantitative differences. In this regard, we note in particu
that the term proportional tov in Eq. ~15! cannot in fact be
interpreted as a pure drag force, since it does not always
in opposition tov and does not vanish in the limit of zer
dissipation (c50). Indeed, the remaining termv2/2h is
purely conservative in nature, in spite of its appearan
since energy is conserved whenc50. We further note that
the precise placement of the absolute values in Eqs.~13!–
~15! is critical in cases whereh and/orḣ become negative.
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It is instructive to examine the time evolution ofK, which
may be obtained by differentiating Eq.~10! and combining
the result with Eq.~13!. We thereby obtain

K̇5 r̄Aahḣ2cr̄uḣu3, ~16!

which shows that the forceQ dissipates kinetic energy at th
positive definite ratecr̄uḣu3. In the RT case witha5a0
5const, the constant acceleration is equivalent to a poten
energy per unit areaU52 1

2 r̄Aa0h2. Equation ~16! may
then be written in the alternative formĖ52cr̄uḣu3, where
E5K1U. ThusĖ50 whenc50, so the total energy of the
mixing layer is conserved in the absence of dissipation,
as it should be.

III. ASYMPTOTIC LATE-TIME RT AND RM BEHAVIOR

We have already verified that the model correctly redu
to the linear growth law of Eq.~1! in the linear regime. We
now proceed to verify that it also correctly reproduces
known late-time RT and RM scaling laws in the nonline
regime. In doing so, we shall automatically obtain relatio
which uniquely determine the model coefficientsb andc in
terms of the experimentally accessible scaling parametea
andu.

We first consider the RT case, in whicha(t)5a0

5const,Aa0.0, and bothh and ḣ remain positive for all
time. Equation~14! then becomes

hḧ1S 1

2
1

2pc

b D ḣ22
2pAa0

b
h50. ~17!

One readily verifies by direct substitution that the RT scal
law h5aAa0t2 satisfies Eq.~17! provided that

a5
p

2b14pc
. ~18!

This shows thatb would have the valueb5p/2a>10p
>30 in an ideal system with zero dissipation. It follows th
uhu!l even in the nonlinear regime, which further suppo
the idea that the system will continue to behave in an ess
tially linear manner in this regime. The WRH is thus inte
nally self-consistent in this sense.

We now consider the RM case, in whicha(t)50 for t

.0. Now h and ḣ have the same sign at late times, whi
may be taken as positive without loss of generality. The
solute value signs in Eq.~14! can then be omitted, so that

hḧ1S 1

2
1

2pc

b D ḣ250. ~19!

This equation is easily solved by elementary manipulatio
with the result

h~ t !5h1@11p~ ḣ1 /h1!~ t2t1!#1/p, ~20!

whereh1 and ḣ1 are the values ofh and ḣ at t5t1 , and

p5
3

2
1

2pc

b
5

3b14pc

2b
. ~21!
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It follows that h;tu for large t, whereu51/p or

u5
2

3 S 11
4pc

3b D 21

5
2b

3b14pc
. ~22!

This shows thatu52/3 whenc50, in agreement with Eq
~3!, and it further exhibits the expected reduction inu due to
dissipation@9,10#. @It is noteworthy that Eq.~18! shows that
a exhibits a similar reduction, which to our knowledge h
not previously been suggested.# Equations~18! and~22! now
uniquely determine the model coefficientsb andc in terms
of the RT scaling parametera and the RM scaling paramete
u. Inverting these relations, we readily obtain

b5
pu

a~22u!
, ~23!

c5
223u

4a~22u!
. ~24!

Equation~20! implies thatḣ5ḣ1(h1 /h)p21, which com-
bines with Eq. ~10! ~with l5bh) to yield 4pK

5 r̄bḣ1
2h1(h/h1)322p. This may be rewritten in the form

h~ t !5S 4pK~ t !

r̄b
D 1/3Fh1

ḣ1

1p~ t2t1!G 2/3

, ~25!

which shows that Eq.~3! is not in fact restricted to the in
viscid case as previously presumed, but is actually valid
general withb5(4p/b)1/3p2/3 or

b5
2

u FaS 12
u

2D G1/3

. ~26!

This provides a new theoretical relation betweena, b, andu.
Of course,K decays with time whencÞ0 so Eq.~3! is not
particularly useful in that case, but it is remarkable tha
nevertheless remains valid. In the inviscid case,u52/3 and
Eq. ~26! reduces tob5(18a)1/3. This provides a new and to
our knowledge previously unsuspected theoretical rela
betweena andb in the absence of dissipation.

IV. TRANSITION BETWEEN THE LINEAR
AND NONLINEAR REGIMES

We have seen that Eq.~13! correctly reproduces the
known behavior of the RT and RM mixing layers in both t
linear and nonlinear regimes. We now return to the ques
of how to prescribe a suitable transition between these
gimes. The obvious choice would be to effect the transit
at the point wherebuhu becomes equal to the initial pertu
bation wavelengthl0 . This may be done by writingl
5max(l0,buhu). According to Eq.~23!, b>25 for reasonable
values of u, so the resulting transition occurs atuhu
>0.04l0 . This seems much too early, since one would
tuitively expect the linear regime to persist untiluhu;l0 .
The transition can be delayed touhu5ml0 ~wherem;1 may
be set at the user’s discretion! by writing

l5max@l0 ,buhu1~12mb!l0#, ~27!
n

t

n

n
e-
n

-

which does not change the late-time asymptotic behav
However, this is clearly still a primitive and highly oversim
plified transition rule which should not be expected to
very accurate. It would be of obvious interest to consid
more elaborate prescriptions in which the linear and fu
nonlinear regimes are continuously connected by a wea
nonlinear transitional regime which extends over a fin
range ofuhu. Analytical expressions which might serve as
basis for such a prescription have recently been presente
Mikaelian @25#. It should be noted, however, that whenl0 is
very small the transition to the nonlinear regime occurs
quickly that the detailed manner in which it does so becom
relatively unimportant.

The model is now complete. The dynamical evolution
the mixing layer is determined by Eq.~13! for arbitrarya(t),
with b andc given by Eqs.~23! and~24! andl given by Eq.
~27!. The model provides a unified description of the tim
evolution ofh in both the linear and nonlinear regimes, wi
an automatic transition between them atuhu5ml0 . Since the
form of the dissipation term in Eq.~13! was obtained from
inherently nonlinear considerations, this term should
switched off in the linear regime by settingc50 for uhu
,ml0 . The model requires values ofa, u, l0 , m, anda(t)
as input data, and values ofh(0)[h0 and ḣ(0)[ḣ0 at t
50 as initial conditions. In problems that start out in th
linear regime with an impulsive accelerationa(t)5Dvd(t)
at t50, the effect of the impulse is to increment the initi
value of ḣ by an amountḣ(01)2ḣ(02)52pADvh0 /l0 .
It is unnecessary to explicitly include the impulse ina(t) if
ḣ0 is identified withḣ(01) rather thanḣ(02).

In the special case of zero dissipation (c50) and with the
linear-to-nonlinear transition defined byl5l01buhu, Eq.
~13! reduces to an earlier unpublished model independe
derived by Stry@26#. In this model the linear-to-nonlinea
transition occurs even earlier than withl5max(l0,buhu).
This seems undesirable in general, but again becomes im
terial whenl0 is very small.

V. NUMERICAL SOLUTION
OF THE MODEL EQUATIONS

In general it will be necessary to solve Eq.~13! numeri-
cally to obtain solutions for arbitrary acceleration histori
a(t). For numerical purposes it is convenient to replace
second-order Eq.~13! by an equivalent system of two
coupled first-order equations. It is further convenient to
troduce the new variablew5Alḣ, in terms of which 4pK

5 r̄w2 becomes strictly quadratic. One then readily verifi
that Eq.~13! is equivalent to the first-order system

ḣ5
w

Al
, ~28!

ẇ5
2pAah

Al
2

2pcuwuw
l3/2 . ~29!

We have already seen that these equations conserve en
whena(t)5a05const andc50. It is clearly desirable to use
a numerical scheme which preserves this important con
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vation property. One readily verifies that the followin
scheme meets this requirement:

hn112hn

Dt
5

wn111wn

2Aln
, ~30!

wn112wn

Dt
5

pAan

Aln
~hn111hn!2

2pcuwnuwn11

~ln!3/2 . ~31!

Hereqn denotes the numerical approximation to the quan
q at time tn, andDt5tn112tn is the time step. The natura
time scale t in these equations is given by 1/t2

52puAau/l, and it is of course necessary to restrictDt!t
to obtain an accurate solution. Notice that the dissipa
term has been treated in a linearly implicit manner to avoi
corresponding stability restriction onDt. Equations~30! and
~31! constitute a linear system of two equations in the t
unknown quantitieshn11 and wn11. These equations ar
easily solved to advance the system in time.

We have used the scheme of Eqs.~30! and~31! to gener-
ate numerical solutions corresponding to the variab
acceleration experimental data of Dimonte and Schne
~DS! @6#, using the DS parameter valuesa50.061 andu
50.37. The acceleration profilesa(t) of the four cases stud
ied by DS were approximated by piecewise linear profil
The interface was initially flat and glassy in these expe
ments, so very small values ofl0 and h0 were used. The
model consequently enters the nonlinear regime almost
mediately. Figure 1 shows calculated~.calc! and experimen-
tal ~.expt! plots of h vs Z ~with Z5Ż50 at t50) for these
four cases, using the terminology of DS. The model calcu
tions are indeed in good agreement with the experime
data, but this is not surprising since DS already found t
their data were also well represented by a simple bub
dynamics model. As discussed above, models of this t
become essentially equivalent to the present model in

FIG. 1. Comparison of model calculations with experimen
data for four different acceleration histories.
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e
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nonlinear regime, at least in situations like these experime

where there is no sign reversal ofh or ḣ. More extensive
applications to a wider range of variable-acceleration d
and simulations will therefore be required to obtain a be
assessment of the overall accuracy and utility of the pres
model for arbitrarya(t). Such studies should ideally includ
situations in which the linear regime is more important a
longer in duration, which can be arranged by the use
larger initial perturbation wavelengths.

It is noteworthy that in these and other calculations wh
the model immediately enters the nonlinear regime, the
lutions are somewhat more sensitive toh0 than one might
naively expect. The reason is that the RT scaling law of
~2! has an initial slope of zero, so that a relatively sm
change inh corresponds to a relatively large change int near
t50. An apparently small value ofh0 can therefore have the
effect of introducing an appreciable time shift intoh(t),
thereby giving the system a significant ‘‘head start.’’

We also performed RM test calculations for bothADv
.0 andADv,0 in order to verify that the model correctl
predicts the reversal ofh in the latter case. This reversa
indeed occurred with no difficulties, and in both cases
model exhibited a smooth transition between linear growth
early times totu growth at late times. This too is not surpris
ing, since this behavior was built into the model by constru
tion.

Finally, in order to further examine the behavior of th
model upon sign reversal ofh and/or ḣ, we performed RT
demixing calculations in which the sign ofAa0 was suddenly
changed from positive to negative well into the nonline
regime. The fluids initially mixed in accordance with the R
growth law of Eq.~2!, and then rapidly demixed again whe
the sign ofAa0 was reversed. In the case of zero dissipat
(c50), the interface motion overshoots to negative valu
of h, and thereafter the model exhibits undamped nonlin
oscillations inh abouth50. These oscillations are simply
nonlinear analog of the stable linear oscillations predicted
Eq. ~1! for Aa,0. This cycle of alternating mixing/demixing
persists forever in accordance with energy conservat
However, these oscillations are not structurally stable,
they are rapidly quenched by even very small nonzero va
of c.

It is encouraging that the model correctly predicts at le
the qualitative aspects of demixing. However, the mode
its present form is unlikely to provide a satisfactory quan
tative description of demixing rates. The reason is that s
den changes ina tend to cause the larger fluid fragments
the mixing layer to break up into smaller fragments, whi
tends to retard demixing@15,27#. This is not surprising, since
the smaller fragments will experience larger drag forces
similar abrupt fragmentation of larger structures is obser
in RM experiments in which a second impulsive accelerat
follows the first@28#. Effects of this type evidently involve
sudden changes in the spectrum of length scales in the
ing layer, and in order to accurately represent them it w
probably be necessary to introduce additional variables
carry some of this spectral information. It should also
noted that the phenomenon of demixing will exhibit qualit
tive differences between miscible and immiscible fluids,
which the present discussion has been restricted. Misc

l
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fluids will also undergo irreversible mixing on the atom
level, and this will reduce the degree to which demixing c
be accomplished on reversal ofAa.

VI. CONCLUSION

We have presented a simple model, embodied in Eqs.~13!
and~27!, for predicting the time evolution of an incompres
ible planar fluid mixing layer subjected to an arbitrary tim
dependent acceleration history. This model correctly rep
duces the known growth behavior and scaling laws for b
the RT and RM instabilities in both the linear and nonline
regimes. It is hoped that this model will prove useful
correlating experimental and direct numerical simulat
data on mixing at unstable fluid interfaces with variable
celeration. We reemphasize, however, that the model is
ticularly simplistic in its treatment of demixing effects an
the transition between the linear and fully nonlinear regim
It seems likely that further refinements along the lines d
cussed in Secs. IV and V will be required to accurately r
resent these effects in situations where they are importa

The present model is restricted to incompressible flu
The incompressible RT instability is of reasonably wide
rt,

g

k-
n

-
h
r

-
r-

s.
-
-
.
s.
-

terest in its own right, whereas the incompressible RM ins
bility is primarily of interest as an approximation to cases
which the impulsive acceleration is produced by the pass
of a shock wave through layers of compressible fluid. T
approximation then requires one to distinguish between
correct for differences in the preshock and postshock co
tions, particularly perturbation amplitude and Atwood num
ber @29–32#. Although we have not considered such corre
tions here, it should be noted that they are of essen
importance for many practical applications.
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