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Simple model for linear and nonlinear mixing at unstable fluid interfaces
with variable acceleration
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A simple model is described for predicting the time evolution of the half-widdi a mixing layer between
two initially separated immiscible fluids of different density subjected to an arbitrary time-dependent variable
acceleration histora(t). The model is based on a heuristic expression for the kinetic energy per unit area of
the mixing layer. This expression is based on that for the kinetic energy of a linearly perturbed interface, but
with a dynamically renormalized wavelength which becomes proportionhlitothe nonlinear regime. An
equation of motion foh is then derived from Lagrange’s equations. This model reproduces the known linear
growth rates of the Rayleigh-Tayl¢RT) and Richtmyer-Meshko(RM) instabilities, as well as the nonlinear
RT growth lawh= aAat? for constania (whereA is the Atwood numbérand the nonlinear RM growth law
h~t% for impulsive a, wherea and 6 depend on the rate of kinetic energy dissipation. In the case of zero
dissipation,#=2/3 in agreement with elementary scaling arguments. A conservative numerical scheme is
proposed to solve the model equations, and is used to perform calculations that agree well with published
experimental mixing data for four different acceleration histori84.063-651X%98)13411-6

PACS numbes): 47.20.Bp, 47.20.Ma, 47.27i, 47.55.Kf

I. INTRODUCTION [The acceleratiom(t) is of course equivalent to an artificial
external body forcg(t) in the opposite direction, and vice
There is considerable current interest in unstable fluid inyersa] For an initially quiescent interface with=0 att
terfaces, particularly those driven by the normal acceleration-— it follows that h=21hy(e"+e™ ") in the RT case
of adjacent fluid layers with different densities. The initial [where hy,=h(0)>0 and r2=kAa] and h=hy(1

unperturbed interface is assumed to be planar, and we restrigty AAyt) in the RM case. Thus the RT case exhibits expo-
attention to incompressible immiscible fluids with negligible nential growth, but only wheAa,>0, whereas the RM case
surface tension. The degree to which the two fluids aryhibits linear growth regardless of the signfkv. Notice
mixed together by an instability may be characterized by thgnat negative values di must be allowed in order to de-
half-width h(t) of the mixing layer as a function of the time gcripe the RT stable casfs,<0 andAAv <0. This merely
t. This half-width is usually defined as the visual penetrationngicates that the initial displacement has suffered a reversal
depth of the lighter fluid into the heavier one. Alternative i gjrection, in which case the half-width of the mixing layer
definitions ofh will differ in numerical value but should be 3y pe identified witHh|.
of the same order of magnitude. For theoretical purposes it |p, the |ate-time fully nonlinear regimé(t) is believed to
might be preferable to definle as the volume per unit area opey simple scaling laws for both the RT and RM instabili-
transported(exchangeyl across the initial interface. This ties The late-time scaling law for the RT instability is given
quantity is inherently symmetrical between the two fdes,by [4—6]
but unfortunately is difficult to determine experimentally.

The two classical instabilities of this type are the
Rayleigh-Taylor (RT) [1] and Richtmyer-MeshkoWRM)
[2,3] instabilities, which respectively correspond to the op-
posite limiting cases of constant and impulsive accelerationfor Aa;>0, where the dimensionless coefficients of order
These instabilities are respectively defined bgt)=a, 0.05 and is nearly independent Af This time dependence
=const and a(t)=Avd(t), where a(t) is the time- follows from a simple dimensional argumé#i, but the fact
dependent acceleration of the interface in the normal directhath remains nearly linear il even in the nonlinear re-
tion. In the linear regimeh may be identified with the am- glme'ls nOt'eWOI'thy, as this does not follow from dimensional
plitude of a small sinusoidal perturbation of wavelength considerations alone. _ _ _
= 2ar/k. The time evolution oh(t) may then be determined ~_ The corresponding late-time scaling law for the RM insta-
the inviscid case where there is no dissipation of kinetic en-
ergy into thermal energy. In this case the kinetic energy per
unit areaK deposited by the impulsive acceleration is con-
_ served fort>0 and becomes available for use in construct-
where q=dg/dt for any q, A=(p,—p1)/(p2+p1) is the ing a similarity variable. The same type of dimensional ar-
Atwood number, ang,,p, are the densities of the two ad- gument used by Taylor to determine the scaling law for an
jacent incompressible fluids, which are labeled so that a posexpanding blast wavg7] then leads immediatel}8] to the
tive acceleratioma(t) is directed from fluid 1 into fluid 2. RM scaling law

h=aAa,t? (2)

h=kAah (1)
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K\ 13 its use for arbitrarya(t). We have also verified that the
h=/3(=) t23, 3 model accurately represents the variable-acceleration experi-
p mental data of Dimonte and Schneidél, but this is not a
_ very stringent test for reasons to be discussed in Sec. V.
wherep=3(p;1+p,) and B is another dimensionless coeffi- Further applications to a wider range of variable-acceleration
cient, which may, however, depend upanThis scaling law  experimental data and direct numerical simulations will be

is also confirmed by other argumeri,10] which further  required to obtain a better assessment of the overall accuracy
indicate that the time exponent of 2/3 is shifted to smallerand utility of the model for arbitrara(t).
values by nonzero dissipation. The RM scaling law then
takes the formh~t? [9—11], where the exponerd<2/3 is
somewhat uncertain. Experiments and numerical simulations
to date have yielded a fairly wide range of values fgisee We consider a flat slab of large but finite thickness com-
[11], and references cited thergimvhich mostly tend to lie  posed of two adjacent incompressible fluid layers. The un-
below 2/3 consistent with the effects of dissipatidih.also  perturbed interface between the fluids is located=aZ(t)
seems likely that some of these previous studies did ndh a Cartesian coordinate systemy,z). Fluid 1 has density
reach late enough times to see the asymptotic limiting behays; and occupies the regiaf(t) — AZ,<z<Z(t), while fluid
ior, and this probably accounts for some of the scatter in th@ has densityp, and occupies the regiod(t)<z<Z(t)
reported values of.) Based on Eq(3), however, it seems +AZ,. The unperturbed velocity of both fluids is then sim-
quite certain tha#=2/3 in an ideal incompressible system 1y 7 in the z direction, and the acceleration of the slab is
with zero dissipation. It should be possible to confirm thisby_ /., = . o
direct numerical simulations carried to sufficiently late times a(t)=Z2. Now suppose that the interface location is per-
: . S y turbed to z=Z(t)+h(t)coskx, where |h|lk<1 and |h|
provided that care is taken to minimize the effects of numer|-<AZ. We reauire the resuling potential flow field
cal dissipation. It is of course not surprising that the RM case_V : .t first qd inh. In thi I'g P imation th
should be more sensitive to dissipation than the RT case, ¢ to firs ordger inh. In this linéar approximation the
since the constant acceleration provides a continual supply undar_y cqndmons on the velocity potent_kalare simply
kinetic energy in the latter which is absent in the former.  J®/dz=Z+h coskx at z=Z and d¢/9z—Z for |z=Z|
Use of the ideal RM scaling law requires knowledge of>|h|. The solution to Laplace’s equation under these condi-
acceleration. This energy may readily be evaluated in thdy
linear approximation, with the resylt0,12,13

Il. CONSTRUCTION OF THE MODEL

1_ ¢=ZzIEcoskx exd *k(z—2)], (5)
K=3 pk(Adv ho)?, (4)
where the upper sign applies far>Z+h coskx and the
which depends on the amplitude and wavelength of the inilower sign forz<Z+h coskx The total kinetic energy per
tial perturbation as well as the strength of the impulse. Itunit area of the slab is then given byT
follows that even at late times, the RM instability retains =3Jdxdyda|V ¢|%/fdxdy. SinceT is quadratic ing, it
memory of the initial conditions througk, whereas the RT must be evaluated to second ordehimnd/orh to describe
instability is believed to lose all memory of the initial con- the linear regime. For this purpose it is essential to include
ditions at late time$4]. This difference is a further reflection the second-order effects of the perturbation onzhategra-
of the fact that the RT instability is driven by a continuous tion limits. However, it is unnecessary to evalugtétself to
source of kinetic energy which is absent in the RM case. second order, since the linearized interface dynamics is com-
The pure limiting cases of RT and RM instability are pletely determined by the linear approximationgdl]. The
rarely encountered in practical situations, where the accelergecond-order correction  therefore cannot contribute
tion a(t) usually exhibits a more complicated time depen-to second order, and this has been directly confirmed by a
dence(see[6,14,15, and references cited thergii©ur pur- more detailed analysis. The required integrations are
pose here is to present a simple model for predidti(tj for  straightforward, and the resulting second-order expression
arbitrarya(t). This model is based on a heuristic expressionfor T is given by
for the kinetic energy per unit area of the mixing layer. This
expression has the same form as that for the kinetic energy of —, 1 o1
a linearly perturbed interface, but with the perturbation T=5 ph*=5AphhZ+ 5 MZ7, (6)
wavelengthA =27/k replaced by a dynamically renormal-
|_zed wavelgngth\(t) w_h|ch is pqstulated to bepome propor- .o e M = pAZi+p,AZ, and Ap=p,—p=2pA. The
tional to h in the nonlinear regime. An equation of motion _. . e :
for h is then derived from Lagrange’s equations, with thefIrSt term in Eq.(6) represents the kinetic energy in a Gal-
grang q ' . . . . . S
inclusion of an additional generalized force term to represenif€an coordinate frame moving with velocig. This is just
the effects of dissipatiofL6]. In the special cases of constant th€ intrinsic kinetic energy of the moving perturbed inter-
and impulsive acceleration, this model correctly reproduce&ce, which is therefore given by
all of the known growth behavior and scaling laws summa-
rized above for both the RT and RM instabilities in both the K = i;hz 7
linear and nonlinear regimes. This lends some confidence in 2k '
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This expression reduces to E@) in the impulsive case, Similar ideas have previously been discussed by other au-

whereh=kAAuvh, for t>0. thors. In particular, the above plausibility argument for the
Equation(6) will be used to obtain the dynamical evolu- WRH is somewhat reminiscent of the motivation for the su-

tion of the interface from Lagrange’s equatida$] in terms ~ Perposition approximation of Glimrat al. [17], and a simi-

of the generalized coordinatesandZ and their time deriva- lar linear relation betweei andh has previously been in-

tives h and Z. For this purpose we must also consider thevoked in the RT context by YoungB4] and Mikaelian

potential energy associated with whatever external forces[ﬁ’;q' In dthebRtI;]/I co?tei(t bby AlD'TOTteZ 1ang| co—workters
(presumed conservativare employed to produce the acceI-.[ 20, and in both contexis by Aloa al.[21]. However, i .
erationa(t). But these forces are applied at the outer sur-S essential to realize that this relation does not lead to unique

faces of the slab, so they are independerit.dt follows that results in and of itself. In particular, differential equations
V=V(2) is also’ independent o and wifl therefore not valid for constant, such as Eq(1), give no indication as to

contribute to the Lagrange equation of motion for16]. whether factors involving\(t) should appear inside or out-

Since this is the only equation of motion we shall considerS'de of time derivatives. The manner in which the relation

V(Z) can henceforth be ignored and the Lagrandianan ?\(t);_b|h(|t)t|_ IS mt:o_?uczdtlﬁ there_foreLcrltlcaI. B:y mtro?_uc—
simply be identified withT. ing this relation intoT and then using Lagrange’s equations

We first verify that this approach correctly reproduces thet0 determine the time evolution di(t), we automatically

known linearized equation of motion for, namely Eq.(1). preserve the essential property of energy conservation, which

cinati , - : of course is the basis for EB). Other ways of introducing
ISTW:BIE; Eb(ss]ence of dissipation, Lagrange's equationhias the relation\ (t)=b|h(t)| may lead to results inconsistent

with Eq. (3) in the RM case, such ds~ 't [11,20.
It is convenient to combine the linear and nonlinear cases
d[dT|_oT ® by letting \ =27/k=\(|h|). Equation(6) then becomes
dt |\ gf/ oh — . .
_Pr o - LS T2
T 47T)\(|h|)h 2Apth+ MZ4, (9

The required partial derivatives of are easily evaluated 2

from Eq. (6), with the resultsiT/oh=(p/k)h—3AphZ and  while Eq.(7) becomes

dT/dh=—3AphZ. Combining these derivatives with Eq.

(8), we immediately obtain Eq1). Thus the linear regime is

properly described by Egé6) and(8), so we may now direct

our attention to the late-time fully nonlinear regime.
Equation(6) is based on a linearized analysis, so it clearlyThese expressions now encompass both conatamd the

no longer strictly applies in the nonlinear regime. However, WRH (A=b|h|) as special cases. Of course, a transition be-

there are nevertheless heuristic reasons for suspecting that ameen these two cases must be made at some appropriate

appropriate reinterpretation of the linear analysis may retaiitermediate valugor over some range of valuesf |h|.

some validity in the nonlinear regime as well. We observeThis transition will be addressed in Sec. IV.

that this problem contains no natural length scate the As previously discussed, it will also be necessary to allow

limit of large AZ;), so there is no objective basis for describ- for energy dissipation in order to realistically represent the

ing the mixing layer as being either thick or thin. An observ-nonlinear regime. This can be done by introducing an addi-

er's subjective impression of the thickness of the mixingtional generalized forc® into Eq. (8) to represent the ef-

layer is determined entirely by the distance from which it isfects of dissipatiori16]:

viewed. The mixing layer will always look thin when viewed

from a sufficiently distant vantage point. That is to say, from d(dT\ T

far away the interface will always appear to be only slightly d_ ( ) =_—*Q. (11)

. ; . t dh
perturbed, with an apparent perturbation amplitude of order
|h|. Of course, the perturbation will now be irregular rather

p .
K=E)\(|h|)h2. (10

oh

than sinusoidal. and the apparent transverse lenath scale V\fe shall assume that the dissipation rate of kinetic energy in
' PP 9 flle nonlinear regime is controlled by the large scale motions

the irreqularities will also be of ordgh|. This length scale and is consequently independent of molecular viscosity, just

plays the role of the effective wavelength of the perturbauon.as it is in turbulencd22]. This implies that the dissipative

These heuristic considerations suggest that, at least in somé ) , — .
rough scaling sense, the mixing layer may be expected t{P'c€ Q can be expressed entirely in termsgfh, andh.
behave as though it always remains in the linear regime, bupinceh is a distance coordinat@ has the units of force per
with a time-dependent perturbation wavelengift) which ~ Unitarea or energy per unit volume. Th@smust be of order

is continuously dynamically renormalized to a value of orderph?, and in order to be purely dissipative in nature it must
[h(t)|. We therefore adopt the working hypothesis that Eqhave the opposite sign frofm It follows thatQ must be of
(6) remains valid even in the fully nonlinear regime with  the form

=2x/k replaced byi(t) =b|h(t)|, whereb is a dimension- -

less coefficient of order unity which remains to be deter- Q=—cp|h|h, (12
mined. This hypothesis will be referred to as the wavelength

renormalization hypothesi§WRH), the consequences of wherec=0 is a new dimensionless coefficient of order unity
which will now be explored. which may depend upoA.
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Equations(9), (11), and (12) may now be combined to
obtain a general equation of motion for Evaluating the
required partial derivatives of from Eq. (9), we readily
obtain

T ..
M+ 35 hh+2mc|hlh—27Aah=0, 13

where use has been made of the fact that(d\/dh)h

= (dA/d[h|)(h/|h|)h. Equation(13) is the fundamental dy-
namical evolution equation of the model. It is a second-orde
ordinary differential equation which determinbét) for an
arbitrary givera(t). However, the model is not yet complete
because we have not yet specified the values of the mod
coefficientsb and ¢, or the functional form of\(|h|) re-
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It is instructive to examine the time evolution §f which
may be obtained by differentiating EGLO) and combining
the result with Eq(13). We thereby obtain

K=pAahh-cp|h|?, (16)
which shows that the forc® dissipates kinetic energy at the

positive definite ratecp|h|3. In the RT case witha=a,
= const, the constant acceleration is equivalent to a potential

energy per unit are&Jz—%FAaohz. Equation (16) may
then be written in the alternative foré= —cpl|h|®, where

E=K+U. ThusE=0 whenc=0, so the total energy of the
mixing layer is conserved in the absence of dissipation, just
as it should be.

IIl. ASYMPTOTIC LATE-TIME RT AND RM BEHAVIOR

quired to provide a suitable transition between the linear and

nonlinear regimes. These quantities will be determined in  we have already verified that the model correctly reduces
Secs. lll and 1V below. to the linear growth law of Eq(1) in the linear regime. We

In the linear regime with zero dissipation,is constant now proceed to verify that it also correctly reproduces the
with its initial value\y soA=c=0 and Eq.(13) reduces to known late-time RT and RM scaling laws in the nonlinear
Eg. (). In the nonlineafWRH) regime we have\ =b|h| regime. In doing so, we shall automatically obtain relations
and\=b(h/|h|)h, and Eq.(13) becomes which uniquely determine the model coefficiebtsindc in
terms of the experimentally accessible scaling parameters
and 6.

b|h|ﬁ+2b—2h2+27TC|h|h—27TAah=0. (14) We first consider the RT case, in which(t)=a,
h| =const,Aa,>0, and bothh and h remain positive for all
) time. Equation(14) then becomes
In terms ofv=h, Eq.(14) takes the form
hh+(1+2m)h2 2mA%), - 1
- 27ThA v 2mC |v 15 2 b b B (17
"Zpm A \2nt e[| (19

One readily verifies by direct substitution that the RT scaling

) o o ) i . law h= aAagt? satisfies Eq(17) provided that
This equation is reminiscent of previous simple mixing-layer

models based on bubble-rise dynamjés11,21,23,24 in
whichv represents the bubble velocity and the terms propor-
tional to a andv are respectively interpreted as buoyancy
and drag forces, with the coefficients adjusted to allow forThis shows thato would have the valué= 7/2a=107
such additional effects as added mass and entrainment. SuetB0 in an ideal system with zero dissipation. It follows that
models have indeed met with some success in correlatinh| <\ even in the nonlinear regime, which further supports
experimental datf6], but have previously seemed rather too the idea that the system will continue to behave in an essen-
ad hocand approximate to be taken very seriously. It istially linear manner in this regime. The WRH is thus inter-
therefore noteworthy that the present development leads tomally self-consistent in this sense.

similar formulation based on an entirely different and con- We now consider the RM case, in whiaft)=0 for t
siderably more general approach in which bubble dynamics.o Now h andh have the same sign at late times, which

and the ingredients theregbuoyancy, drag, added mass, may he taken as positive without loss of generality. The ab-
etc) play no explicit role. It is tempting to interpret this as an gg)te value signs in Eq14) can then be omitted, so that
indication that models of this type may be somewhat better
2mcC) .
h2=0.

o

20t dmc’ (19

(%

founded than they first appear. However, it should not be 1
assumed that all such models are essentially equivalent or §+ o
interchangeable, as they may exhibit qualitative as well as
quantitative differences. In this regard, we note in particularThis equation is easily solved by elementary manipulations,
that the term proportional to in Eq. (15) cannot in fact be with the result

interpreted as a pure drag force, since it does not always act
in opposition tov and does not vanish in the limit of zero
dissipation ¢=0). Indeed, the remaining term?/2h is
purely conservative in nature, in spite of its appearancewhereh, andhl are the values ofi andh att=t;, and
since energy is conserved when 0. We further note that
the precise placement of the absolute values in Ef3-

(15) is critical in cases wherk and/orh become negative.

hh+( (19

h(t)=hy[1+p(hy/hy)(t—ty)]*P, (20)

2mcC B 3b+4mc

_3
P=3* 5 "~
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It follows thath~t? for larget, whered=1/p or which does not change the late-time asymptotic behavior.
. However, this is clearly still a primitive and highly oversim-

o= E 14 AmC _ 2b 22) plified transition rule which should not be expected to be

3 3b 3b+4mc’ very accurate. It would be of obvious interest to consider

more elaborate prescriptions in which the linear and fully
This shows thaty=2/3 whenc=0, in agreement with Eq. nonlinear regimes are continuously connected by a weakly
(3), and it further exhibits the expected reductiordidue to  nonlinear transitional regime which extends over a finite
dissipation[9,10]. [It is noteworthy that Eq(18) shows that range of|h|. Analytical expressions which might serve as a
a exhibits a similar reduction, which to our knowledge hasbasis for such a prescription have recently been presented by
not previously been suggeste&iquationg18) and(22) now  Mikaelian[25]. It should be noted, however, that wheg is
uniquely determine the model coefficierisandc in terms  very small the transition to the nonlinear regime occurs so
of the RT scaling parameterand the RM scaling parameter quickly that the detailed manner in which it does so becomes

6. Inverting these relations, we readily obtain relatively unimportant.
The model is now complete. The dynamical evolution of
b= w0 (23) the mixing layer is determined by E(L3) for arbitrarya(t),
a(2—0)’ with b andc given by Egs(23) and(24) and\ given by Eq.
(27). The model provides a unified description of the time
_ 2-30 evolution ofh in both the linear and nonlinear regimes, with
c= 4a(2—-6)° (24) an automatic transition between thenjldt=m\,. Since the

form of the dissipation term in Eq13) was obtained from
Equation(20) implies thath=h,(h,/h)?~%, which com-  inherently nonlinear considerations, this term should be

bines with Eq. (10) (with A=bh) to vyield 4wK  Switched off in the Iinegr regime by setting=0 for |h|
=pbh?h,(h/h;)3~2P. This may be rewritten in the form <Mhg. The model requires values of 6, Ao, m, anda(t)
as input data, and values &i{0)=hy and h(0)=h, at t

47K (t)\ " h, 23 =0 as initial conditions. In problems that start out in the
h(t)=| — —+p(t—ty)| , (25  linear regime with an impulsive acceleratiaiit) = Av 5(t)

pb hy att=0, the effect of the impulse is to increment the initial
which shows that Eq(3) is not in fact restricted to the in- value ofh by an amount(0+)—h(0—)=2wAAvhg/A,.
- . . . . It is unnecessary to explicitly include the impulseadi(t) if

viscid case as previously presumed, but is actually valid in

general withg=(4/b)Y3p?3 or hq is identified withh(0+) rather tharh(0—).
In the special case of zero dissipatian{0) and with the
2 NES linear-to-nonlinear transition defined by=\y+b|h|, Eq.
B=5lall-3 (26)  (13) reduces to an earlier unpublished model independently

derived by Stry[26]. In this model the linear-to-nonlinear

This provides a new theoretical relation betweers, andg.  transition occurs even earlier than with=max(o,bjhl).

Of course K decays with time where#0 so Eq.(3) is not Th!s seems undeswable in general, but again becomes imma-
particularly useful in that case, but it is remarkable that itterial whenhg is very small.

nevertheless remains valid. In the inviscid cage,2/3 and

Eq. (26) reduces tg8=(18a). This provides a new and to V. NUMERICAL SOLUTION

our knowledge previously unsuspected theoretical relation OF THE MODEL EQUATIONS

betweena and g in the absence of dissipation. o .
“« B P In general it will be necessary to solve EG3) numeri-

cally to obtain solutions for arbitrary acceleration histories
a(t). For numerical purposes it is convenient to replace the
second-order EQq(13) by an equivalent system of two

coupled first-order equations. It is further convenient to in-

We have seen that Eq13) correctly reproduces the . R~ .
known behavior of the RT and RM mixing layers in both thetro_duce the new variable= J\h, in terms of which 4rK

linear and nonlinear regimes. We now return to the question pw? becomes strictly quadratic. One then readily verifies
of how to prescribe a suitable transition between these réhat Eq.(13) is equivalent to the first-order system
gimes. The obvious choice would be to effect the transition

IV. TRANSITION BETWEEN THE LINEAR
AND NONLINEAR REGIMES

at the point wheréo|h| becomes equal to the initial pertur- b= w 28)

bation wavelengthhy. This may be done by writing\ N

=max(\g,bh|). According to Eq.(23), b=25 for reasonable

\ialues of 6, so the resulting transition occurs ah| . . 2mAah  2mclwlw

=0.04\,. This seems much too early, since one would in- w= _ - (29)
tuitively expect the linear regime to persist unfil| ~\,. Ny A

The transition can be delayed|i = m\, (wherem~ 1 may

be set at the user’s discretioby writing We have already seen that these equations conserve energy

whena(t) =ag=const ancc=0. It is clearly desirable to use
A=max \g,b|h[+(1—mb)\o], (27 a numerical scheme which preserves this important conser-
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3 - - - - - nonlinear regime, at least in situations like these experiments
sonstant.cale —— where there is no sign reversal bfor h. More extensive
25l "‘i,?ngr;jgg:gg:gjj o i 4 ] applic.ations. to a \_Nider range of varigble—acceleration data
onstant ot o o o e and simulations will therefore be required to obtain a better
"increase expt” © B e assessment of the overall accuracy and utility of the present
impulse.expt x g o | model for arbitrarya(t). Such studies should ideally include
T, situations in which the linear regime is more important and
. longer in duration, which can be arranged by the use of
£ J larger initial perturbation wavelengths.
= It is noteworthy that in these and other calculations where
_______________ - the model immediately enters the nonlinear regime, the so-
.......................... ixx x lutions are somewhat more sensitive ltg than one might
¥ x naively expect. The reason is that the RT scaling law of Eq.
(2) has an initial slope of zero, so that a relatively small
. change irh corresponds to a relatively large changé mmear
t=0. An apparently small value d&f, can therefore have the
effect of introducing an appreciable time shift inkqt),
5 2 p” pos 8'0 1(')0 120 thereby giving the system a significant “head start.”

Z(cm) We also performed RM test calculations for botAv

>0 andAAv <0 in order to verify that the model correctly
predicts the reversal df in the latter case. This reversal
indeed occurred with no difficulties, and in both cases the
model exhibited a smooth transition between linear growth at
early times tat’ growth at late times. This too is not surpris-
ing, since this behavior was built into the model by construc-

FIG. 1. Comparison of model calculations with experimental
data for four different acceleration histories.

vation property. One readily verifies that the following
scheme meets this requirement:

hn+l hn n+1 n tion.

—h_wtw (30) Finally, in order to further examine the behavior of the

At 20\ model upon sign reversal ¢f and/orh, we performed RT

demixing calculations in which the sign Afay was suddenly
whtlow"  gAa ) 27w w1 changed from positive to negative well into the nonlinear
= ("1 +h") = ——=7—. (31 regime. The fluids initially mixed in accordance with the RT

At N (Am?3 ; : .

A growth law of Eq.(2), and then rapidly demixed again when

the sign ofAay was reversed. In the case of zero dissipation

Hereq" denotes the numerical approximation to the quantity(c=0), the interface motion overshoots to negative values
q at imet”, andAt=t""!—1"is the time step. The natural of h, and thereafter the model exhibits undamped nonlinear
time scale = in these equations is given by 7/ oscillations inh abouth=0. These oscillations are simply a
=2m|Aal/\, and it is of course necessary to restddt<r  ponjlinear analog of the stable linear oscillations predicted by
to obtain an accurate solution. Notice that the dissipative=g. (1) for Aa<0. This cycle of alternating mixing/demixing
term has been treated in a linearly implicit manner to avoid gersists forever in accordance with energy conservation.
corresponding stability restriction akit. Equations(30) and  However, these oscillations are not structurally stable, as
(31) constitute a linear system of two equations in the twothey are rapidly quenched by even very small nonzero values
unknown quantitiesh"" and w"*. These equations are of ¢
easily solved to advance the system in time. It is encouraging that the model correctly predicts at least

We have used the scheme of E(B0) and(31) to gener-  the qualitative aspects of demixing. However, the model in
ate numerical solutions corresponding to the variablejts present form is unlikely to provide a satisfactory quanti-
acceleration experimental data of Dimonte and Schneidegtive description of demixing rates. The reason is that sud-
(DS) [6], using the DS parameter values=0.061 and®  den changes i tend to cause the larger fluid fragments in
=0.37. The acceleration profilegt) of the four cases stud- the mixing layer to break up into smaller fragments, which
ied by DS were approximated by piecewise linear profilestends to retard demixingl5,27). This is not surprising, since
The interface was initially flat and glassy in these experithe smaller fragments will experience larger drag forces. A
ments, so very small values af, and h, were used. The similar abrupt fragmentation of larger structures is observed
model consequently enters the nonlinear regime almost imn RM experiments in which a second impulsive acceleration
mediately. Figure 1 shows calculatedalg and experimen-  foliows the first[28]. Effects of this type evidently involve
tal (.expd plots ofh vs Z (with Z=Z=0 att=0) for these sudden changes in the spectrum of length scales in the mix-
four cases, using the terminology of DS. The model calculaing layer, and in order to accurately represent them it will
tions are indeed in good agreement with the experimentgbrobably be necessary to introduce additional variables to
data, but this is not surprising since DS already found thatarry some of this spectral information. It should also be
their data were also well represented by a simple bubblenoted that the phenomenon of demixing will exhibit qualita-
dynamics model. As discussed above, models of this typéve differences between miscible and immiscible fluids, to
become essentially equivalent to the present model in thevhich the present discussion has been restricted. Miscible
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fluids will also undergo irreversible mixing on the atomic terest in its own right, whereas the incompressible RM insta-
level, and this will reduce the degree to which demixing canbility is primarily of interest as an approximation to cases in

be accomplished on reversal Af. which the impulsive acceleration is produced by the passage
of a shock wave through layers of compressible fluid. This
VI. CONCLUSION approximation then requires one to distinguish between and

) o correct for differences in the preshock and postshock condi-
We have presented a simple model, embodied in 8.  tions, particularly perturbation amplitude and Atwood num-
and(27), for predicting the time evolution of an incompress- per[29-32. Although we have not considered such correc-

ible planar fluid mixing layer subjected to an arbitrary time- tions here, it should be noted that they are of essential
dependent acceleration history. This model correctly repropyportance for many practical applications.

duces the known growth behavior and scaling laws for both
the RT and RM instabilities in both the linear and nonlinear
regimes. It is hoped that this model will prove useful in
correlating experimental and direct numerical simulation | am grateful to Guy Dimonte, Dan Klem, Chuck Leith,
data on mixing at unstable fluid interfaces with variable ac-Karnig Mikaelian, Oleg Schilling, and Pete Stry for helpful
celeration. We reemphasize, however, that the model is padiscussions, comments, and suggestions, to Chuck Leith and
ticularly simplistic in its treatment of demixing effects and Pete Stry for sharing their unpublished results, to Guy Di-
the transition between the linear and fully nonlinear regimesmonte for supplying me with his experimental data in digital
It seems likely that further refinements along the lines disform, and to Guy Dimonte, Karnig Mikaelian, and Oleg
cussed in Secs. IV and V will be required to accurately rep-Schilling for directing my attention to some of the relevant
resent these effects in situations where they are important.literature. This work was performed under the auspices of the
The present model is restricted to incompressible fluidsU.S. Department of Energy by Lawrence Livermore National
The incompressible RT instability is of reasonably wide in-Laboratory under Contract No. W-7405-ENG-48.
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